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Short Integer Solutions (SISq,m,β)
Given a positive integer q, a matrix A ∈ Zn×mq and β ∈ R, find
e ∈ Zm \ {0} such that

Ae = 0 mod q and ‖e‖2 ≤ β

For functions q(n),m(n) and β(n), SISq,m,β is the probability
ensemble over instances (q(n), A, β(n)) with A chosen uniformly
at random among Zn×m(n)

q .
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Solutions for SIS

Proposition
For any A ∈ Zn×mq and β ≥

√
mqn/m, then the instance (q, A, β)

of SIS admits a solution.

Proof:
The set of all vectors

{
0, . . . , qn/m

}m has cardinality greater
than qn. Hence there exist z1 6= z2 such that Az1 = Az2 mod q
and z = z1 − z2 6= 0. Then Az = 0 mod q and ‖z‖ ≤

√
mqn/m,

since it has coordinates in [−qn/m, qn/m] ∩ Z.
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Recall:

Λq(A) := {y ∈ Zm : y = Ax mod q for some x ∈ Zn}

Λ⊥q (A) := {e ∈ Zm : Ae = 0 mod q}

e ∈ Zm is a solution if and only if e ∈ Λ⊥q (A) and ‖e‖ ≤ β

Proposition
I Λ⊥q (A) = q(Λq(A)∨) and Λq(A) = q((Λ⊥q (A))∨),
I det(Λ⊥q (A)) ≤ qn,
I det(Λq(A)) ≥ qm−n,
I If q is prime, the above equalities hold if and only if A is

full-rank.
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Corollary
Let A be in Zn×mq . Then λ1(Λ⊥q (A)) ≤

√
mqm−n.

Suppose to have (q, A, β) where β = γqm−n and γ = exp(n), we
can solve SISq,m,β in polynomial time by LLL.

Usually in crypto: β = subexp(n)qm−n.
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A Worst-case to Average-case Reduction:
SIVP to SIS

Shortest Independent Vectors (SIVPγ)
Given a n-dimensional full-rank lattice basis B and γ ∈ R, find
a set S of linearly independent vectors in L(B) such that
‖S‖ ≤ γλn(B).

Theorem [GPV08]

For any m(n), β(n) polynomial in n and γ = β · Õ(
√
n) there

exists a polynomial time reduction from solving SIVPγ in the
worst case to solving SISq,m,β on the average, for any prime
q ≥ β(n) · ω(

√
log n).
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Proof Sketch:

1. IncIVD to SIS (A-W)
2. SIVP to IncIVD (Lattice Preserving Reduction)

Incremental Independent Vectors Decoding (IncIVDφ
γ,g)

Given a n-dimensional full-rank lattice basis B, γ ∈ R, a set S
of linearly independent vectors in L(B), such that
‖S‖2 ≥ γφ(B), and a target vector t ∈ Rn, find v ∈ L(B) such
that ‖v − t‖2 ≤ ‖S‖2/g.

Question: who is φ?
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Smoothing parameter ηε(L)

Naive characterization: “If one picks a noise vector from a
Gaussian distribution with radius at least as large as the
smoothing parameter, and reduces the noise vector modulo the
fundamental parallelepiped of the lattice, then the resulting
distribution is very close to uniform.[MR07]”
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For any vector c, x and any s > 0, let

ρs,c(x) = exp(−π‖(x− c)/s‖2)

be a Gaussian functions centered in c and scaled by a factor s.

The associated (continuos) Gaussian distribution can be defined
by the probability density function

Ds,c(x) =
ρs,c(x)

sn

for each x ∈ Rn.

The discrete Gaussian distribution of a given L a lattice is

DL,s,c(x) :=
Ds,c(x)

Ds,c(L)
=
ρs,c(x)

ρs,c(L)
∀x ∈ L
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Figure: [MR07]

I If x is distributed according to Ds,c and we condition on
x ∈ L, the conditional distribution of x is DL,s,c.

I (*) The smoothing parameter is the minimal s such that the
vectors distributed DL,s,c have an average value very close
to c and expected squared distance from c very close to
s2n/2π.
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Smoothing Parameter
For a n-dimensional lattice L and ε > 0, the smoothing
parameter ηε(L) is the smallest s such that ρ1/s(L∨ \ {0}) ≤ ε.

I [MR07] For any ε > 0, s ≥ ηε(L), c ∈ Rn and lattice L(B),
the statistical distance between Ds,c mod P(B) and the
uniform distribution over P(B) is at most ε/2.

I [GPV08] Let L,L′ n-dimensional lattices such that L ⊇ L′.
Then for any ε ∈ (0, 1/2), any s ≥ ηε(L′) and any
c ∈ Rn,the statistical distance between Ds,c mod L′ and
the uniform distribution over L mod L′ is at most 2ε
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IncIVD to SIS

Theorem [GPV08]
For any g(n) > 1 and negligible ε(n), there exists a probabilistic
polynomial time reduction from solving IncIVDηεγ,g in the worst
case for γ(n) = g(n) · β(n) ·

√
n to solving SISq,m,β on the

average with non-negligible probability, for any
q(n) ≥ γ(n) · ω(

√
log n) and m(n), β(n) polynomial in n.
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Proof:
Suppose to have an oracle O that solves SISq,m,β on average
with non-negligible probability. The input of the reduction is an
instance (B,S, t) of IncIVDηεγ,g.

1. j $←− {1, . . . ,m}

2. α $←− {−β, . . . , β} \ {0}
3. cj ← : q

α
t

4. For each i ∈ [m] \ {j}: ci ← 0

5. s← q
γ
‖S‖

6. For each i ∈ [m]: yi ← : DL(B),s,ci

7. Y ← : [y1, . . . , ym] ∈ Rn×m

8. A← : B−1Y mod q

9. e← O(q,A, β)
10. v ← : 1

q
Y e

11. if ‖v − t‖ ≤ ‖S‖/g : return v else goto 1.
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δ-Correctness:
I For any j, α, the distribution of A in statistically close to

uniform over Zm×nq and O outputs a nonzero solution e
such that ej = α with non-negligible probability.
Proof:
‖S‖ ≥ γηε(L(B))⇒ s ≥ qηε(L(B)) = ηε(qL(B)).
For ε ∈ (0, 1/2) and any c ∈ Rn,the statistical distance
between DL(B),s,c mod qL(B) and the uniform distribution
over L(B) mod qL(B) is at most 2ε. Hence each yi
mod qL(B) is statistically close to uniform in L(B)/qL(B).
∃z ∈ Znq uniform : Bz = yi mod q ⇒ z = B−1yi mod q is
uniform.
We may assume e 6= 0 and ‖e‖ ≤ β, moreover the outputs
of O is statistically close to uniform for each j, α. Then the
probability that ej = α is 1/(2βm) = 1/poly(n). N
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I If e is a valid solution and ej = α, then v ∈ L(B).
Proof:
Ae = 0 mod q ⇒ ∃z ∈ Zn : Ae = qz ⇒ B−1Y e = qz.
Then v = Y e/q = Bz ∈ L(B).N

I If e is a valid solution and ej = α, then ‖v − t‖ ≤ ‖S‖/g.
Proof:
ej = α⇒ t = Ce

q .
For each i exists wi ∈ L(B) wi + ci = yi. Then
v − t = 1

q (W + C)e− t = 1
q (W + C)− 1

qCe = 1
qWe.

It is a combination of vectors sampled by DL(B),s,0. Since
s ≥ ηε, ‖W‖ ≤ s

√
n.

‖v − t‖ ≤ ‖e‖‖W‖q ≤ βs
√
n

q = γs
√
n

qg
√
n

= ‖S‖
g .N

I 1.-10. runs in polynomial time.
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Termination: We showed that with non-negligible probability
1.-10. return a valid v. Let ε = 2−δ with δ � 0. We can
approximate the probability to give O a valid input by 1− 2−δ,
and the probability that ‖W‖ ≤ s

√
n, too. Then the total

success probabily is lower bonded by

(1− 2−δ)2(1/2mβ).

Thus we expected at most poly(n) loops.

Correctness: δ-Correctness+Termination.

Question: Are we cheating?
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SIVP to IncIVD

“Lattice-preserving reductions allow to reduce a (worst-case) lattice problem
over a given class of lattices to another (worst-case) lattice problem over the

same class of lattices.”[Mic07]

Theorem
For any γ(n) ≥ 1 there exists a reduction from SIVPγ to
IncIVDλnγ,4.
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Proof:
Given B a basis of a full-rank n-lattice we want to construct a
set S of n linearly independent vectors such that ‖S‖ ≤ γλn(B).
Let O be an oracle that solves IncIVD.
As input we set S = B.
1. Find s ∈ S \ {s} such that ‖s‖ = ‖S‖
2. Select t a vector orthogonal to S \ {s} such that ‖t‖ = ‖S‖

2

3. v ←: O(B,S, t, γ, 4)

4. if v = ⊥ return S
5. S ← (S \ {s}) ∪ {v}
6. goto 1.
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Correctness*:
I If the oracle fails ‖S‖ ≤ γλn(B).

I If ‖v − t‖ ≤ ‖S‖4 then |‖v‖ − ‖t‖| ≤ ‖S‖4 .

‖S‖
4
≤ ‖v‖ ≤ 3‖S‖

4

I ‖(S \ {s}) ∪ {v} ‖ ≤ ‖S‖
I v is linearly independent respect to S \ {s}:

‖t‖ − ‖v − t‖ > 0.

Termination: Up to an LLL reduction, we can suppose
‖B‖ ≤ 2nλn(B). The quantity log

∏
s∈S ‖s‖ decreases by a

constant at each iteration. Then after at most O(n2) iterations
it the algorithm terminates.
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Remark: We can use φ = ηε and reduce to SIVPηεγ .

Theorem [Mic07]
For any n-dimensional lattice L and ε > 0,

ηε(L) ≤
√

ln(2n(1 + e−1))

π
λn(L).

In particular, for any function ω(log(n)) there exists ε(n) such
that ηε(L) ≤

√
ω(log(n)).
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Thank you!
Questions?

22 / 23



References

[GPV08] Craig Gentry, Chris Peikert, and Vinod
Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Proceedings of the
Fortieth Annual ACM Symposium on Theory of
Computing, STOC ’08, pages 197–206, 2008.

[Mic07] Daniele Micciancio. Generalized compact knapsacks,
cyclic lattices, and efficient one-way functions.
computational complexity, 16:365–411, 2007.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to
average-case reductions based on gaussian measures.
SIAM J. Comput., 37(1):267–302, April 2007.

[Per18] Hilder Vítor Lima Pereira. The SIS problem, 2018.
https://hilder-vitor.github.io/notes.html,.

23 / 23

https://hilder-vitor.github.io/notes.html

	Solutions for SIS
	A Worst-case to Average-case Reduction: SIVP to SIS
	Smoothing parameter
	IncIVD to SIS
	SIVP to IncIVD

	References

