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Timeline

2016 NIST calling for quantum-resistant cryptographic
algorithms for new public-key crypto standards.

2017 Aggarwal, Joux, Prakash, Santha propose A new
public-key cryptosystem via Mersenne numbers.

2017 Deadline submission to Round 1 NIST PQC
"Competition": 69 accepted papers of 82, more
than 40% lattice-based including Mersenne-756839.

2019 Round 2 candidates announced: 26 selected, ∼ 46%
lattice-based not including Mersenne-756839.
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Ring+Small Noise

I Let R := Z�pZ, where n is a prime and p = 2n − 1 a
Mersenne prime.

I There is a bijection between integers mod p and strings of
length n (up to 1n ' 0n).

I Reducing mod p preserves low Hamming weight strings.

n = 7, p = 27 − 1

219 + 2 ∈ Z

25

0

2

34 ∈ R
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Ring+Small Noise

n = 31, p = 231 − 1

· 24
4

I HW(2i ·A) = HW(A)
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Ring+Small Noise

+

I HW(A+B) ≤ HW(A) + HW(B)

I HW(A ·B) ≤ HW(A)HW(B)

I HW(−B) = n− HW(B)
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AJPS-2

Setup n, p = 2n − 1 prime, h = λ ∈ N, (E ,D) error correcting
code where E : {0, 1}h → {0, 1}n.

KeyGen - F,G ∈ R random such that HW(F ) = HW(G) = h
- R ∈ R random

pk = (R,F ·R+G) = (R, T ) and sk = F

Encrypt Given m ∈ {0, 1}h:
- generate random A, B1, B2 ∈ R such that
HW(A) = HW(B1) = HW(B2) = h

- (C1, C2) := (A ·R+B1, (A · T +B2)⊕ E(m))

Decrypt m = D((F · C1)⊕ C2)

Note:
F · C1 =A · F ·R+ F ·B1 = A · (T −G) + F ·B1

=(A · T +B2)−A ·G−B2 +B1 · F.
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Mersenne Low Hamming Combination Search Problem (MLHCSP)

Let p = 2n − 1 be an n-bit Mersenne prime, h be an integer, R be a
uniformly random n-bit string and F,G having Hamming weight h.
Given (R,FR+G), find F,G.

F = 224 + 219 + 2 and G = 218 + 27 + 25

F

G

R = 230+225+223+221+219+215+213+211+210+27+26+25+23+2
T = FR+G

R

T
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Weak-key Attack, Beunardeau et al.

Considers the lattice L generated by the rows of the matrix and
T = FR+G mod p = FR+G+Kp:[

1 −R
0 p

]
I [0, T ]− [F,G] = −F [1,−R] +K[0, p] ∈ L,
I if F,G <

√
p⇒ [0, T ] is close to L,

I if F,G <
√
p this is a Closest Vector Problem in a lattice of

dimension 2.

I This enables to recover F and G.

L′ =

 2n/2 0 T
0 1 −R
0 0 p


- It contains a vector of norm ' (volL′)1/3 ' 2

n
2 ,

- ‖[2n
2 , F,G]‖ ' 2

n
2
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- HW(F ) = h⇒ the probability that F < 2
n
2 is 2−h.

- HW(G) = h⇒ the probability that G < 2
n
2 is 2−h.

F

G

We can recover the private key with probability 2−2h.
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I The previous attack is a weak key attack: recover sk from pk
with probability 2−2h over the public-keys.

I Beunardeau et al. showed that by using random partitions of the
strings F and G, for any pk one can recover the secret F and G
with complexity O(22h).
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Our New Attack

Assume that m = 0 and E(m) = 0.

C1 = A ·R+B1

C2 = A · T +B2 +�
��HHHE(m)


2

2
3n 0 C1 C2

0 1 −R −T
0 0 p 0
0 0 0 p


I L contains vectors of norm ' (volL)

1
2 ' 2

2
3n,

I s = [22n/3, A,B1, B2] ∈ L,

I if A,B1, B2 < 2
2
3n ⇒ ‖s‖ ' 2

2
3n,

11 / 20



Our New Attack

Assume that m = 0 and E(m) = 0.

C1 = A ·R+B1

C2 = A · T +B2 +�
��HHHE(m)


2

2
3n 0 C1 C2

0 1 −R −T
0 0 p 0
0 0 0 p


I L contains vectors of norm ' (volL)

1
2 ' 2

2
3n,

I s = [22n/3, A,B1, B2] ∈ L,

I if A,B1, B2 < 2
2
3n ⇒ ‖s‖ ' 2

2
3n,

11 / 20



I HW(A) = h⇒ the probability that A < 2
2
3
n is

(
2
3

)h.
A =

I HW(B1) = h⇒ the probability that B1 < 2
2
3
n is

(
2
3

)h.
I HW(B2) = h⇒ the probability that B2 < 2

2
3
n is

(
2
3

)h.
We can recover A,B1, B2 with probability

(
2
3

)3h.

12 / 20



Small summary

Beunardeau et al. weak-key attack:

- It recovers the secret key,
- F,G < 2

n
2 ,

- the probability is O(2−2h)

Our attack:

- It distinguishes between m = 0 and m 6= 0,
- A,B1, B2 < 2

2
3n,

- the probability is O
((

2
3

)3h) ' O(2−1.75h).

Using random partitions as in Beunardeau et al., our attack
complexity becomes O(21.75h) instead of O(22h)
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Case 1:
n = 31, h = 1. Suppose we sampled B1, B2 < 2

2
3n and A = 223 > 2

2
3n

A

A = 27 · 216 ⇒ s′ = [2
2
3n, 27, B1, B2] is a candidate shortest vector of

2
2
3n 0 C1 C2

0 1 −R · 216 −T · 216
0 0 p 0
0 0 0 p



A · 2−16
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Case 2:
Suppose h = 4

A =

for any shift is not possible to recover A,B1, B2.
Split in 16+15 bits:

a→ (x1, x2) = (129, 129) and

A = 129 · 216 + 129.

We have a representative of A of lower norm but higher dimension.
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Lβ,P,Q,S = 〈Mβ,P,Q,S〉, given β ∈ Z \ {0} and P,Q, S three
interval-like partitions of [n]

β 0 0 · · · 0 0 · · · 0 C1 · 2−q1 0 · · · 0 C2 · 2−s1

0 1 0 · · · 0 0 · · · 0 −R · 2pk−q1 0 · · · 0 −T · 2pk−s1

0 0 1 · · · 0 0 · · · 0 −R · 2pk−1−q1 0 · · · 0 −T · 2pk−1−s1

0
. . . 0 · · · 0 −R · 2p2−q1 0 · · · 0 −T · 2p2−s1

0 0 0 · · · 1 0 · · · 0 −R · 2p1−q1 0 · · · 0 −T · 2p1−s1

0 0 0 · · · 0 1 · · · 0 −2q`−q1 0 · · · 0 0

0 0 0 · · · 0 0
. . . 0 −2qi−q1 0 · · · 0 0

0 0 0 · · · 0 0 · · · 1 −2q2−q1 0 · · · 0 0
0 0 0 · · · 0 0 · · · 0 p 0 · · · 0 0

0 0 0 · · · 0 0 · · · 0 0 1 · · · 0 −2sj−s1

0 0 0 · · · 0 0 · · · 0 0 0
. . . 0 −2si−s1

0 0 0 · · · 0 0 · · · 0 0 0 · · · 1 −2s2−s1

0 0 0 · · · 0 0 · · · 0 0 0 · · · 0 p


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a) Lβ,P,Q,S is full-rank lattice of dimension d = k + `+ j + 1,
b) vol(Lβ,P,Q,S) ' 2(2+t)n where β = 2tn,
c) we have to ensure that structural vectors are not shorter

than our target secret vector,
d) we expect the entries of the target vector to be about of the

same size for a β-lucky tuple (P,Q, S).

Then k = ` = j is a good choice and in such a case
I d = 3k + 1

I if the norm of the target vector is less then 2
2
3k
n we have a

lucky tuple.
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The success probability is roughly (k · 2n/3k · 1/n)3h ' 2−1.75h.
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The number of (P,Q, S) to try before finding a lucky one is
approximately

O(21.75h).

h n log2(ȳ) log2(Ȳ )

3 127 6.5 7.4
6 521 13.0 14.5
7 607 14.6 16.5
9 1279 14.9 16.4

Table : Average number ȳ of partitions required to recover the secret
values A, B1, B2, compared to the average number Ȳ required for the
original attack. We used 70 samples for h = 3, 6, 7, and 9 samples for
h = 9.
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Conclusions

I We described a variant of the Beunardeau et al. attack
against AJPS-2, with complexity O(21.75h) (instead of
O(22h)) to break the indistinguishability of ciphertexts.

I AJPS is still a good post-quantum candidate, but it is
important to work on cryptanalysis.

Thanks for your attention!
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