Improved Cryptanalysis of the AJPS Mersenne Based Cryptosystem

Jean-Sébastien Coron and Agnese Gini

University of Luxembourg

June 27, 2019 NutMiC

Timeline

- 2016 NIST calling for quantum-resistant cryptographic algorithms for new public-key crypto standards.
- 2017 Aggarwal, Joux, Prakash, Santha propose A new public-key cryptosystem via Mersenne numbers.
- 2017 Deadline submission to Round 1 NIST PQC"Competition": 69 accepted papers of 82, more than 40% lattice-based including Mersenne-756839.
- 2019 Round 2 candidates announced: 26 selected, $\sim 46\%$ lattice-based not including *Mersenne-756839*.

▶ Let $\mathcal{R} := \mathbb{Z}/p\mathbb{Z}$, where n is a prime and $p = 2^n - 1$ a Mersenne prime.

- Let $\mathcal{R} := \mathbb{Z}/p\mathbb{Z}$, where n is a prime and $p = 2^n 1$ a Mersenne prime.
- ▶ There is a bijection between integers mod p and strings of length n (up to $1^n \simeq 0^n$).

- ▶ Let $\mathcal{R} := \mathbb{Z}/p\mathbb{Z}$, where *n* is a prime and $p = 2^n 1$ a Mersenne prime.
- ▶ There is a bijection between integers mod p and strings of length n (up to $1^n \simeq 0^n$).
- ightharpoonup Reducing mod p preserves low Hamming weight strings.

- ▶ Let $\mathcal{R} := \mathbb{Z}/p\mathbb{Z}$, where *n* is a prime and $p = 2^n 1$ a Mersenne prime.
- ▶ There is a bijection between integers mod p and strings of length n (up to $1^n \simeq 0^n$).
- ightharpoonup Reducing mod p preserves low Hamming weight strings.

- Let $\mathcal{R} := \mathbb{Z}/p\mathbb{Z}$, where n is a prime and $p = 2^n 1$ a Mersenne prime.
- ▶ There is a bijection between integers mod p and strings of length n (up to $1^n \simeq 0^n$).
- ightharpoonup Reducing mod p preserves low Hamming weight strings.

$$n = 7, p = 2^7 - 1$$

$$n = 31, p = 2^{31} - 1$$

$$\blacktriangleright \; \mathsf{HW}(2^i \cdot A) = \mathsf{HW}(A)$$

- $HW(A+B) \le HW(A) + HW(B)$
- $\blacktriangleright \ \mathsf{HW}(A \cdot B) \leq \mathsf{HW}(A) \mathsf{HW}(B)$
- $\blacktriangleright \ \mathsf{HW}(-B) = n \mathsf{HW}(B)$

AJPS-2

Setup
$$n, p = 2^n - 1$$
 prime, $h = \lambda \in \mathbb{N}$, $(\mathcal{E}, \mathcal{D})$ error correcting code where $\mathcal{E} \colon \{0,1\}^h \to \{0,1\}^n$.

$$\mathsf{KeyGen} \quad \text{ - } F,G \in \mathcal{R} \text{ random such that } \mathsf{HW}(F) = \mathsf{HW}(G) = h$$

- $R \in \mathcal{R}$ random

$$pk = (R, F \cdot R + G) = (R, T)$$
 and $sk = F$

Encrypt Given $m \in \{0,1\}^h$:

- generate random $A, B_1, B_2 \in \mathcal{R}$ such that $HW(A) = HW(B_1) = HW(B_2) = h$

-
$$(C_1, C_2) := (A \cdot R + B_1, (A \cdot T + B_2) \oplus \mathcal{E}(m))$$

Decrypt
$$m = \mathcal{D}((F \cdot C_1) \oplus C_2)$$

AJPS-2

Setup
$$n, p = 2^n - 1$$
 prime, $h = \lambda \in \mathbb{N}$, $(\mathcal{E}, \mathcal{D})$ error correcting code where $\mathcal{E} \colon \{0,1\}^h \to \{0,1\}^n$.

$$\mathsf{KeyGen} \quad \text{ - } F,G \in \mathcal{R} \text{ random such that } \mathsf{HW}(F) = \mathsf{HW}(G) = h$$

- $R \in \mathcal{R}$ random

$$pk = (R, F \cdot R + G) = (R, T)$$
 and $sk = F$

Encrypt Given $m \in \{0,1\}^h$:

- generate random
$$A$$
, B_1 , $B_2 \in \mathcal{R}$ such that $\mathsf{HW}(A) = \mathsf{HW}(B_1) = \mathsf{HW}(B_2) = h$
- $(C_1, C_2) \coloneqq (A \cdot R + B_1, (A \cdot T + B_2) \oplus \mathcal{E}(m))$

Decrypt
$$m = \mathcal{D}((F \cdot C_1) \oplus C_2)$$

Note:

$$F \cdot C_1 = A \cdot F \cdot R + F \cdot B_1 = A \cdot (T - G) + F \cdot B_1$$
$$= (A \cdot T + B_2) - A \cdot G - B_2 + B_1 \cdot F.$$

Mersenne Low Hamming Combination Search Problem (MLHCSP)

Let $p = 2^n - 1$ be an *n*-bit Mersenne prime, *h* be an integer, *R* be a uniformly random *n*-bit string and *F*, *G* having Hamming weight *h*. Given (R, FR + G), find F, G.

Mersenne Low Hamming Combination Search Problem (MLHCSP)

Let $p = 2^n - 1$ be an *n*-bit Mersenne prime, *h* be an integer, *R* be a uniformly random *n*-bit string and *F*, *G* having Hamming weight *h*. Given (R, FR + G), find F, G.

$$F = 2^{24} + 2^{19} + 2$$
 and $G = 2^{18} + 2^7 + 2^5$

$$R = 2^{30} + 2^{25} + 2^{23} + 2^{21} + 2^{19} + 2^{15} + 2^{13} + 2^{11} + 2^{10} + 2^{7} + 2^{6} + 2^{5} + 2^{3} + 2$$

$$T = FR + G$$

Weak-key Attack, Beunardeau et al.

Considers the lattice \mathcal{L} generated by the rows of the matrix and $T = FR + G \mod p = FR + G + Kp$:

$$\left[\begin{array}{cc} 1 & -R \\ 0 & p \end{array} \right]$$

- $[0,T] [F,G] = -F[1,-R] + K[0,p] \in \mathcal{L},$
- if $F, G < \sqrt{p} \Rightarrow [0, T]$ is close to \mathcal{L} ,
- ▶ if $F, G < \sqrt{p}$ this is a Closest Vector Problem in a lattice of dimension 2.
- \triangleright This enables to recover F and G.

Weak-key Attack, Beunardeau et al.

Considers the lattice \mathcal{L} generated by the rows of the matrix and $T = FR + G \mod p = FR + G + Kp$:

$$\left[\begin{array}{cc} 1 & -R \\ 0 & p \end{array} \right]$$

- $[0,T] [F,G] = -F[1,-R] + K[0,p] \in \mathcal{L},$
- if $F, G < \sqrt{p} \Rightarrow [0, T]$ is close to \mathcal{L} ,
- ▶ if $F, G < \sqrt{p}$ this is a Closest Vector Problem in a lattice of dimension 2.
- \triangleright This enables to recover F and G.

$$\mathcal{L}' = \begin{bmatrix} 2^{n/2} & 0 & T \\ 0 & 1 & -R \\ 0 & 0 & p \end{bmatrix}$$

- It contains a vector of norm $\simeq (\operatorname{vol} \mathcal{L}')^{1/3} \simeq 2^{\frac{n}{2}}$,
- $-\|[2^{\frac{n}{2}}, F, G]\| \simeq 2^{\frac{n}{2}}$

- $HW(F) = h \Rightarrow$ the probability that $F < 2^{\frac{n}{2}}$ is 2^{-h} .
- $HW(G) = h \Rightarrow$ the probability that $G < 2^{\frac{n}{2}}$ is 2^{-h} .

We can recover the private key with probability 2^{-2h} .

- ▶ The previous attack is a weak key attack: recover sk from pk with probability 2^{-2h} over the public-keys.
- ▶ Beunardeau *et al.* showed that by using random partitions of the strings F and G, for any pk one can recover the secret F and G with complexity $\mathcal{O}(2^{2h})$.

Our New Attack

Assume that
$$m = 0$$
 and $\mathcal{E}(m) = 0$.

$$C_1 = A \cdot R + B_1$$

$$C_2 = A \cdot T + B_2 +$$

Our New Attack

Assume that m = 0 and $\mathcal{E}(m) = 0$.

$$C_1 = A \cdot R + B_1$$

$$C_2 = A \cdot T + B_2 +$$

$$\begin{bmatrix} 2^{\frac{2}{3}n} & 0 & C_1 & C_2 \\ 0 & 1 & -R & -T \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{bmatrix}$$

- \mathcal{L} contains vectors of norm $\simeq (\operatorname{vol} \mathcal{L})^{\frac{1}{2}} \simeq 2^{\frac{2}{3}n}$,
- $\mathbf{s} = [2^{2n/3}, A, B_1, B_2] \in \mathcal{L},$
- if $A, B_1, B_2 < 2^{\frac{2}{3}n} \Rightarrow ||\mathbf{s}|| \simeq 2^{\frac{2}{3}n}$,

▶ $\mathsf{HW}(A) = h \Rightarrow \text{the probability that } A < 2^{\frac{2}{3}n} \text{ is } \left(\frac{2}{3}\right)^h.$

$$A = \square$$

- ▶ $\mathsf{HW}(B_1) = h \Rightarrow \text{the probability that } B_1 < 2^{\frac{2}{3}n} \text{ is } \left(\frac{2}{3}\right)^h.$
- ▶ $\mathsf{HW}(B_2) = h \Rightarrow \text{the probability that } B_2 < 2^{\frac{2}{3}n} \text{ is } \left(\frac{2}{3}\right)^h.$

We can recover A, B_1, B_2 with probability $\left(\frac{2}{3}\right)^{3h}$.

Small summary

Beunardeau et al. weak-key attack:

- It recovers the secret key,
- $F, G < 2^{\frac{n}{2}},$
- the probability is $\mathcal{O}(2^{-2h})$

Our attack:

- It distinguishes between m=0 and $m\neq 0$,
- $A, B_1, B_2 < 2^{\frac{2}{3}n}$,
- the probability is $\mathcal{O}\left(\left(\frac{2}{3}\right)^{3h}\right) \simeq \mathcal{O}(2^{-1.75h}).$

Using random partitions as in Beunardeau *et al.*, our attack complexity becomes $\mathcal{O}(2^{1.75h})$ instead of $\mathcal{O}(2^{2h})$

Case 1:

n = 31, h = 1. Suppose we sampled $B_1, B_2 < 2^{\frac{2}{3}n}$ and $A = 2^{23} > 2^{\frac{2}{3}n}$

 $A=2^7\cdot 2^{16}\Rightarrow s'=[2^{\frac{2}{3}n},2^7,B_1,B_2]$ is a candidate shortest vector of

$$\begin{bmatrix} 2^{\frac{2}{3}n} & 0 & C_1 & C_2 \\ 0 & 1 & -R \cdot 2^{16} & -T \cdot 2^{16} \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{bmatrix}$$

$$A \cdot 2^{-16}$$

Case 2:

Suppose h = 4

for any shift is not possible to recover A, B_1, B_2 . Split in 16+15 bits:

$$a \to (x_1, x_2) = (129, 129)$$
 and

$$A = 129 \cdot 2^{16} + 129.$$

We have a representative of A of lower norm but higher dimension.

 $\mathcal{L}_{\beta,P,Q,S} = \langle M_{\beta,P,Q,S} \rangle$, given $\beta \in \mathbb{Z} \setminus \{0\}$ and P,Q,S three interval-like partitions of [n]

[β	$0 \cdots 0$	$0 \cdots 0$	$C_1 \cdot 2^{-q_1}$	$0 \cdots 0$	$C_2 \cdot 2^{-s_1}$
	0	$1 0 \cdots 0$	0 · · · 0	$-R \cdot 2^{p_k-q_1}$	0 0	$-T \cdot 2^{p_k-s_1}$
-	0	$0 \ 1 \cdots 0$	$0 \cdots 0$	$-R \cdot 2^{p_{k-1}-q_1}$	$0 \cdots 0$	$-T\cdot 2^{p_{k-1}-s_1}$
-						
-	0	· · ·	$0 \cdots 0$	$-R\cdot 2^{p_2-q_1}$	$0 \cdots 0$	$-T\cdot 2^{p_2-s_1}$
	0	$0\ 0\cdots 1$	$0 \cdots 0$	$-R \cdot 2^{p_1 - q_1}$	$0 \cdots 0$	$-T\cdot 2^{p_1-s_1}$
	0	$0 \cdots 0$	1 0	$-2^{q_{\ell}-q_1}$	0 · · · 0	0
-						
-	0	$0 \ 0 \cdots 0$	$0 \cdot \cdot \cdot 0$	$-2^{q_i-q_1}$	$0 \cdots 0$	0
	0	$0 \cdots 0$	$0 \cdots 1$	$-2^{q_2-q_1}$	$0 \cdots 0$	0
	0	$0 \cdots 0$	$0 \cdots 0$	p	$0 \cdots 0$	0
	0	$0 \cdots 0$	0 · · · 0	0	1 0	$-2^{s_j-s_1}$
-						
-	0	$0 \ 0 \cdots 0$	$0 \cdots 0$	0	0 0	$-2^{s_i-s_1}$
	0	$0 \cdots 0$	$0 \cdots 0$	0	$0 \cdots 1$	$-2^{s_2-s_1}$
Į	0	$0 \cdots 0$	$0 \cdots 0$	0	$0 \cdots 0$	p

- a) $\mathcal{L}_{\beta,P,Q,S}$ is full-rank lattice of dimension $d = k + \ell + j + 1$,
- b) $\operatorname{vol}(\mathcal{L}_{\beta,P,Q,S}) \simeq 2^{(2+t)n}$ where $\beta = 2^{tn}$,
- c) we have to ensure that structural vectors are not shorter than our target secret vector,
- d) we expect the entries of the target vector to be about of the same size for a β -lucky tuple (P, Q, S).

- a) $\mathcal{L}_{\beta,P,Q,S}$ is full-rank lattice of dimension $d = k + \ell + j + 1$,
- b) $\operatorname{vol}(\mathcal{L}_{\beta,P,Q,S}) \simeq 2^{(2+t)n}$ where $\beta = 2^{tn}$,
- c) we have to ensure that structural vectors are not shorter than our target secret vector,
- d) we expect the entries of the target vector to be about of the same size for a β -lucky tuple (P, Q, S).

Then $k = \ell = j$ is a good choice and in such a case

- d = 3k + 1
- ▶ if the norm of the target vector is less then $2^{\frac{2}{3k}n}$ we have a lucky tuple.

The success probability is roughly $(k \cdot 2n/3k \cdot 1/n)^{3h} \simeq 2^{-1.75h}$.

The number of (P, Q, S) to try before finding a lucky one is approximately

 $\mathcal{O}(2^{1.75h}).$

h	n	$\log_2(\bar{y})$	$\log_2(\bar{Y})$
3	127	6.5	7.4
6	521	13.0	14.5
7	607	14.6	16.5
9	1279	14.9	16.4

Table: Average number \bar{y} of partitions required to recover the secret values A, B_1 , B_2 , compared to the average number \bar{Y} required for the original attack. We used 70 samples for h = 3, 6, 7, and 9 samples for h = 9.

Conclusions

- ▶ We described a variant of the Beunardeau *et al.* attack against AJPS-2, with complexity $\mathcal{O}(2^{1.75h})$ (instead of $\mathcal{O}(2^{2h})$) to break the indistinguishability of ciphertexts.
- ▶ AJPS is still a good post-quantum candidate, but it is important to work on cryptanalysis.

Conclusions

- ▶ We described a variant of the Beunardeau *et al.* attack against AJPS-2, with complexity $\mathcal{O}(2^{1.75h})$ (instead of $\mathcal{O}(2^{2h})$) to break the indistinguishability of ciphertexts.
- ▶ AJPS is still a good post-quantum candidate, but it is important to work on cryptanalysis.

Thanks for your attention!