Provably Solving the Hidden Subset Sum Problem via Statistical Learning

Jean-Sébastien Coron and Agnese Gini

University of Luxembourg

MathCrypt 2021

August 15th, 2021

Subset Sum Problem

$$h = \alpha_1 x_1 + \dots + \alpha_n x_n \pmod{q}$$

with $x_1, \ldots, x_n \in \{0, 1\}$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{Z}/q\mathbb{Z}$.

Given q, h and $\alpha_1, \ldots, \alpha_n$, recover x_1, \ldots, x_n .

Hidden Subset Sum Problem

$$h_{1} = \alpha_{1}x_{1,1} + \dots + \alpha_{n}x_{n,1} \pmod{q}$$

$$\vdots$$

$$h_{m} = \alpha_{1}x_{1,m} + \dots + \alpha_{n}x_{n,m} \pmod{q}$$
with $x_{i,j} \in \{0,1\}$ and $\alpha_{1}, \dots, \alpha_{n} \in \mathbb{Z}/q\mathbb{Z}$.
Given q and h_{1}, \dots, h_{m} , recover $\alpha_{1}, \dots, \alpha_{n}$ and $x_{i,j}$ for $i \in [n]$ and $j \in [m]$.

The weights α_i 's are hidden!!

Hidden Subset Sum Problem

Let q be an integer, and let $\alpha_1, \ldots, \alpha_n$ be random integers in $\mathbb{Z}/q\mathbb{Z}$. Let $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{Z}^m$ be random vectors with components in $\{0, 1\}$. Let $\mathbf{h} \in \mathbb{Z}^m$ satisfying:

$$\mathbf{h} = \alpha_1 \mathbf{x}_1 + \dots + \alpha_n \mathbf{x}_n \pmod{q}$$

Given q and h, recover the integers α_i 's and the vectors \mathbf{x}_i 's.

$$h = \alpha X \pmod{q}$$

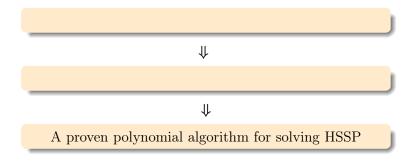
3/19

Timeline



A proven polynomial algorithm for solving HSSP

The strategy

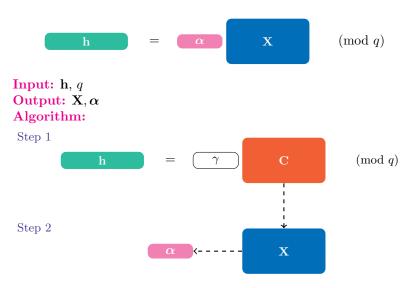


A Sketch

7 / 19

Input: h, qOutput: X, α

A Sketch

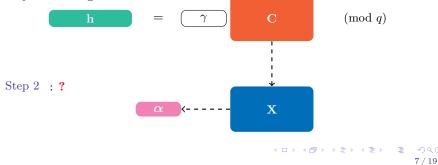


▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

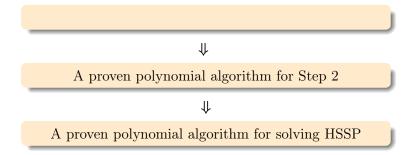
A Sketch

Input: h, qOutput: X, α Algorithm:

Step 1 : orthogonal lattice attack \checkmark



The strategy



A proven polynomial algorithm for Step 2

1. The \mathbf{x}_i 's generate a full-rank sublattice of $\mathcal{L}(\mathbf{C})$.

$$\mathbf{X}$$
 = \mathbf{W} \mathbf{C}

2. If $\mathbf{V} = \mathbf{W}^{-1}$, then the pairs of columns satisfy

$$\mathbf{V}$$
 $\mathbf{\tilde{x}}_{i}$ = $\mathbf{\tilde{c}}_{i}$

3. The *m* columns $\tilde{\mathbf{c}}_i$ of **C** are samples from the *discrete* parallelepiped associated to **V**:

$$\mathcal{P}_{\{0,1\}}(\mathbf{V}) \coloneqq \{\mathbf{Vx} \mid \mathbf{x} \in \{0,1\}^n\}.$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

11 / 19

3. The *m* columns $\tilde{\mathbf{c}}_i$ of **C** are samples from the *discrete* parallelepiped associated to **V**:

$$\mathcal{P}_{\{0,1\}}(\mathbf{V}) \coloneqq \{\mathbf{Vx} \mid \mathbf{x} \in \{0,1\}^n\}.$$

Discrete Hidden Parallelepiped Problem

Given $\operatorname{poly}(n)$ independent samples from the uniform distribution over $\mathcal{P}_{\{0,1\}}(\mathbf{V})$, recover the columns of \mathbf{V} .

The strategy

A proven polynomial algorithm for solving DHPP

A proven polynomial algorithm for Step 2

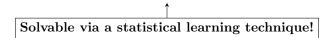
1

\downarrow A proven polynomial algorithm for solving HSSP

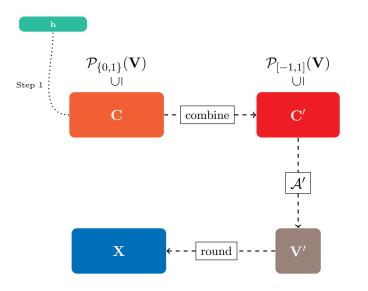
Hidden Parallelepiped Problem [NR09]

$$\mathcal{P}_{[-1,1]}(\mathbf{V}) = \{\mathbf{Vx} : \mathbf{x} \in [-1,1]^n\}.$$

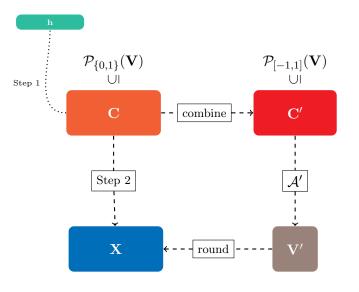
Given a sequence of $\mathsf{poly}(n)$ independent samples from the uniform distribution over $\mathcal{P}_{[-1,1]}(\mathbf{V})$, the goal is to recover a good approximation of the columns of $\pm \mathbf{V}$.



Our algorithm for disclosing X



Our algorithm for disclosing X



The goal

A proven polynomial algorithm for solving DHPP

$\begin{array}{c} \Downarrow\\ A \text{ proven polynomial algorithm for Step 2} \end{array}$

$\downarrow \\ A proven polynomial algorithm for solving HSSP$

Hidden Linear Combination Problem

Let q be an integer, and let $\alpha_1, \ldots, \alpha_n$ be random integers in $\mathbb{Z}/q\mathbb{Z}$. Let $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{Z}^m$ be random vectors with components in $\{0, \ldots, B\}$. Let $\mathbf{h} \in \mathbb{Z}^m$ satisfying:

$$\mathbf{h} = \alpha_1 \mathbf{x}_1 + \dots + \alpha_n \mathbf{x}_n \pmod{q}$$

Given q, B and \mathbf{h} , recover the integers α_i 's and the vectors \mathbf{x}_i 's.

$$h = \alpha X \pmod{q}$$

Conclusions

Theorem

There exists an algorithm for solving the hidden subset sum problem with constant probability in polynomial time, using poly(n) samples, for any prime integer q of bitsize at least $4n^2 \log(n)$.

• Attacks for Hidden Linear Combination Problem

approach	complexity	status
lattice	$2^{\Omega(n)} \cdot \log^{\mathcal{O}(1)} B$	heuristic
multivariate	$\mathcal{O}(n^{B+1})$	heuristic
statistical	poly(n,B)	m heuristic/
		proven for $B = 1$

Thank you for your attention!

Full paper at https://ia.cr/2021/1007

Bonus question: can we find an attack $poly(n, \log B)$?

イロト イポト イヨト イヨト

18/19

References

- [CG20] Jean-Sébastien Coron and Agnese Gini. A polynomial-time algorithm for solving the hidden subset sum problem. In Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part II, 2020. Full version available at https://eprint.iacr.org/2020/461.
- [NR09] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. J. Cryptology, 22(2):139–160, 2009.
- [NS99] Phong Q. Nguyen and Jacques Stern. The hardness of the hidden subset sum problem and its cryptographic implications. In Advances in Cryptology - CRYPTO '99, 19th Annual International Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, pages 31–46, 1999.